Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gender Based Emotion Recognition System for Telugu Rural Dialects Using Hidden Markov Models (1006.4548v1)

Published 23 Jun 2010 in cs.OH

Abstract: Automatic emotion recognition in speech is a research area with a wide range of applications in human interactions. The basic mathematical tool used for emotion recognition is Pattern recognition which involves three operations, namely, pre-processing, feature extraction and classification. This paper introduces a procedure for emotion recognition using Hidden Markov Models (HMM), which is used to divide five emotional states: anger, surprise, happiness, sadness and neutral state. The approach is based on standard speech recognition technology using hidden continuous markov model by selection of low level features and the design of the recognition system. Emotional Speech Database from Telugu Rural Dialects of Andhra Pradesh (TRDAP) was designed using several speaker's voices comprising the emotional states. The accuracy of recognizing five different emotions for both genders of classification is 80% for anger-emotion which is achieved by using the best combination of 39-dimensioanl feature vector for every frame (13 MFCCs, 13 Delta Coefficients and 13 Acceleration Coefficients) and a classifier using HMM. This outcome very much matches with that acquired with the same database with subjective evaluation by human judges. Both gender-dependent and gender-independent experiments are conducted on TRDAP emotional speech database.

Citations (17)

Summary

We haven't generated a summary for this paper yet.