Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Prize-collecting Network Design on Planar Graphs (1006.4339v1)

Published 22 Jun 2010 in cs.DS and cs.DM

Abstract: In this paper, we reduce Prize-Collecting Steiner TSP (PCTSP), Prize-Collecting Stroll (PCS), Prize-Collecting Steiner Tree (PCST), Prize-Collecting Steiner Forest (PCSF) and more generally Submodular Prize-Collecting Steiner Forest (SPCSF) on planar graphs (and more generally bounded-genus graphs) to the same problems on graphs of bounded treewidth. More precisely, we show any $\alpha$-approximation algorithm for these problems on graphs of bounded treewidth gives an $(\alpha + \epsilon)$-approximation algorithm for these problems on planar graphs (and more generally bounded-genus graphs), for any constant $\epsilon > 0$. Since PCS, PCTSP, and PCST can be solved exactly on graphs of bounded treewidth using dynamic programming, we obtain PTASs for these problems on planar graphs and bounded-genus graphs. In contrast, we show PCSF is APX-hard to approximate on series-parallel graphs, which are planar graphs of treewidth at most 2. This result is interesting on its own because it gives the first provable hardness separation between prize-collecting and non-prize-collecting (regular) versions of the problems: regular Steiner Forest is known to be polynomially solvable on series-parallel graphs and admits a PTAS on graphs of bounded treewidth. An analogous hardness result can be shown for Euclidian PCSF. This ends the common belief that prize-collecting variants should not add any new hardness to the problems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.