Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Geometric Approach to Low-Rank Matrix Completion (1006.2086v1)

Published 10 Jun 2010 in cs.IT, math.IT, and math.NA

Abstract: The low-rank matrix completion problem can be succinctly stated as follows: given a subset of the entries of a matrix, find a low-rank matrix consistent with the observations. While several low-complexity algorithms for matrix completion have been proposed so far, it remains an open problem to devise search procedures with provable performance guarantees for a broad class of matrix models. The standard approach to the problem, which involves the minimization of an objective function defined using the Frobenius metric, has inherent difficulties: the objective function is not continuous and the solution set is not closed. To address this problem, we consider an optimization procedure that searches for a column (or row) space that is geometrically consistent with the partial observations. The geometric objective function is continuous everywhere and the solution set is the closure of the solution set of the Frobenius metric. We also preclude the existence of local minimizers, and hence establish strong performance guarantees, for special completion scenarios, which do not require matrix incoherence or large matrix size.

Citations (50)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.