Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Rigorous Extension of the Schönhage-Strassen Integer Multiplication Algorithm Using Complex Interval Arithmetic (1006.0405v1)

Published 2 Jun 2010 in cs.NA, cs.CR, and cs.DS

Abstract: Multiplication of n-digit integers by long multiplication requires O(n2) operations and can be time-consuming. In 1970 A. Schoenhage and V. Strassen published an algorithm capable of performing the task with only O(n log(n)) arithmetic operations over the complex field C; naturally, finite-precision approximations to C are used and rounding errors need to be accounted for. Overall, using variable-precision fixed-point numbers, this results in an O(n(log(n))2+Epsilon)-time algorithm. However, to make this algorithm more efficient and practical we need to make use of hardware-based floating-point numbers. How do we deal with rounding errors? and how do we determine the limits of the fixed-precision hardware? Our solution is to use interval arithmetic to guarantee the correctness of results and determine the hardware's limits. We examine the feasibility of this approach and are able to report that 75,000-digit base-256 integers can be handled using double-precision containment sets. This clearly demonstrates that our approach has practical potential; however, at this stage, our implementation does not yet compete with commercial ones, but we are able to demonstrate the feasibility of this technique.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.