Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the Weak Computability of Continuous Real Functions (1006.0394v1)

Published 2 Jun 2010 in cs.CC

Abstract: In computable analysis, sequences of rational numbers which effectively converge to a real number x are used as the (rho-) names of x. A real number x is computable if it has a computable name, and a real function f is computable if there is a Turing machine M which computes f in the sense that, M accepts any rho-name of x as input and outputs a rho-name of f(x) for any x in the domain of f. By weakening the effectiveness requirement of the convergence and classifying the converging speeds of rational sequences, several interesting classes of real numbers of weak computability have been introduced in literature, e.g., in addition to the class of computable real numbers (EC), we have the classes of semi-computable (SC), weakly computable (WC), divergence bounded computable (DBC) and computably approximable real numbers (CA). In this paper, we are interested in the weak computability of continuous real functions and try to introduce an analogous classification of weakly computable real functions. We present definitions of these functions by Turing machines as well as by sequences of rational polygons and prove these two definitions are not equivalent. Furthermore, we explore the properties of these functions, and among others, show their closure properties under arithmetic operations and composition.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.