Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Scheduling Packets with Values and Deadlines in Size-bounded Buffers (1005.4394v1)

Published 24 May 2010 in cs.DS

Abstract: Motivated by providing quality-of-service differentiated services in the Internet, we consider buffer management algorithms for network switches. We study a multi-buffer model. A network switch consists of multiple size-bounded buffers such that at any time, the number of packets residing in each individual buffer cannot exceed its capacity. Packets arrive at the network switch over time; they have values, deadlines, and designated buffers. In each time step, at most one pending packet is allowed to be sent and this packet can be from any buffer. The objective is to maximize the total value of the packets sent by their respective deadlines. A 9.82-competitive online algorithm has been provided for this model (Azar and Levy. SWAT 2006), but no offline algorithms have been known yet. In this paper, We study the offline setting of the multi-buffer model. Our contributions include a few optimal offline algorithms for some variants of the model. Each variant has its unique and interesting algorithmic feature. These offline algorithms help us understand the model better in designing online algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)