Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compressive Sensing over the Grassmann Manifold: a Unified Geometric Framework (1005.3729v1)

Published 20 May 2010 in cs.IT, cs.DM, and math.IT

Abstract: $\ell_1$ minimization is often used for finding the sparse solutions of an under-determined linear system. In this paper we focus on finding sharp performance bounds on recovering approximately sparse signals using $\ell_1$ minimization, possibly under noisy measurements. While the restricted isometry property is powerful for the analysis of recovering approximately sparse signals with noisy measurements, the known bounds on the achievable sparsity (The "sparsity" in this paper means the size of the set of nonzero or significant elements in a signal vector.) level can be quite loose. The neighborly polytope analysis which yields sharp bounds for ideally sparse signals cannot be readily generalized to approximately sparse signals. Starting from a necessary and sufficient condition, the "balancedness" property of linear subspaces, for achieving a certain signal recovery accuracy, we give a unified \emph{null space Grassmann angle}-based geometric framework for analyzing the performance of $\ell_1$ minimization. By investigating the "balancedness" property, this unified framework characterizes sharp quantitative tradeoffs between the considered sparsity and the recovery accuracy of the $\ell_{1}$ optimization. As a consequence, this generalizes the neighborly polytope result for ideally sparse signals. Besides the robustness in the "strong" sense for \emph{all} sparse signals, we also discuss the notions of "weak" and "sectional" robustness. Our results concern fundamental properties of linear subspaces and so may be of independent mathematical interest.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)