Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating small frequency moments of data stream: a characteristic function approach (1005.1122v2)

Published 7 May 2010 in cs.DS

Abstract: A data stream is viewed as a sequence of $M$ updates of the form $(\text{index},i,v)$ to an $n$-dimensional integer frequency vector $f$, where the update changes $f_i$ to $f_i + v$, and $v$ is an integer and assumed to be in ${-m, ..., m}$. The $p$th frequency moment $F_p$ is defined as $\sum_{i=1}n \abs{f_i}p$. We consider the problem of estimating $F_p$ to within a multiplicative approximation factor of $1\pm \epsilon$, for $p \in [0,2]$. Several estimators have been proposed for this problem, including Indyk's median estimator \cite{indy:focs00}, Li's geometric means estimator \cite{pinglib:2006}, an \Hss-based estimator \cite{gc:random07}. The first two estimators require space $\tilde{O}(\epsilon{-2})$, where the $\tilde{O}$ notation hides polylogarithmic factors in $\epsilon{-1}, m, n$ and $M$. Recently, Kane, Nelson and Woodruff in \cite{knw:soda10} present a space-optimal and novel estimator, called the log-cosine estimator. In this paper, we present an elementary analysis of the log-cosine estimator in a stand-alone setting. The analysis in \cite{knw:soda10} is more complicated.

Summary

We haven't generated a summary for this paper yet.