Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lower Bounds on Near Neighbor Search via Metric Expansion (1005.0418v1)

Published 3 May 2010 in cs.DS and cs.CG

Abstract: In this paper we show how the complexity of performing nearest neighbor (NNS) search on a metric space is related to the expansion of the metric space. Given a metric space we look at the graph obtained by connecting every pair of points within a certain distance $r$ . We then look at various notions of expansion in this graph relating them to the cell probe complexity of NNS for randomized and deterministic, exact and approximate algorithms. For example if the graph has node expansion $\Phi$ then we show that any deterministic $t$-probe data structure for $n$ points must use space $S$ where $(St/n)t > \Phi$. We show similar results for randomized algorithms as well. These relationships can be used to derive most of the known lower bounds in the well known metric spaces such as $l_1$, $l_2$, $l_\infty$ by simply computing their expansion. In the process, we strengthen and generalize our previous results (FOCS 2008). Additionally, we unify the approach in that work and the communication complexity based approach. Our work reduces the problem of proving cell probe lower bounds of near neighbor search to computing the appropriate expansion parameter. In our results, as in all previous results, the dependence on $t$ is weak; that is, the bound drops exponentially in $t$. We show a much stronger (tight) time-space tradeoff for the class of dynamic low contention data structures. These are data structures that supports updates in the data set and that do not look up any single cell too often.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.