Optimized puncturing distributions for irregular non-binary LDPC codes (1004.5216v2)
Abstract: In this paper we design non-uniform bit-wise puncturing distributions for irregular non-binary LDPC (NB-LDPC) codes. The puncturing distributions are optimized by minimizing the decoding threshold of the punctured LDPC code, the threshold being computed with a Monte-Carlo implementation of Density Evolution. First, we show that Density Evolution computed with Monte-Carlo simulations provides accurate (very close) and precise (small variance) estimates of NB-LDPC code ensemble thresholds. Based on the proposed method, we analyze several puncturing distributions for regular and semi-regular codes, obtained either by clustering punctured bits, or spreading them over the symbol-nodes of the Tanner graph. Finally, optimized puncturing distributions for non-binary LDPC codes with small maximum degree are presented, which exhibit a gap between 0.2 and 0.5 dB to the channel capacity, for punctured rates varying from 0.5 to 0.9.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.