Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressive MUSIC: A Missing Link Between Compressive Sensing and Array Signal Processing (1004.4398v5)

Published 26 Apr 2010 in cs.IT and math.IT

Abstract: The multiple measurement vector (MMV) problem addresses the identification of unknown input vectors that share common sparse support. Even though MMV problems had been traditionally addressed within the context of sensor array signal processing, the recent trend is to apply compressive sensing (CS) due to its capability to estimate sparse support even with an insufficient number of snapshots, in which case classical array signal processing fails. However, CS guarantees the accurate recovery in a probabilistic manner, which often shows inferior performance in the regime where the traditional array signal processing approaches succeed. The apparent dichotomy between the {\em probabilistic} CS and {\em deterministic} sensor array signal processing have not been fully understood. The main contribution of the present article is a unified approach that unveils a {missing link} between CS and array signal processing. The new algorithm, which we call {\em compressive MUSIC}, identifies the parts of support using CS, after which the remaining supports are estimated using a novel generalized MUSIC criterion. Using a large system MMV model, we show that our compressive MUSIC requires a smaller number of sensor elements for accurate support recovery than the existing CS methods and can approach the optimal $l_0$-bound with finite number of snapshots.

Citations (32)

Summary

We haven't generated a summary for this paper yet.