Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Performance Analysis of Sparse Recovery Based on Constrained Minimal Singular Values (1004.4222v2)

Published 23 Apr 2010 in cs.IT and math.IT

Abstract: The stability of sparse signal reconstruction is investigated in this paper. We design efficient algorithms to verify the sufficient condition for unique $\ell_1$ sparse recovery. One of our algorithm produces comparable results with the state-of-the-art technique and performs orders of magnitude faster. We show that the $\ell_1$-constrained minimal singular value ($\ell_1$-CMSV) of the measurement matrix determines, in a very concise manner, the recovery performance of $\ell_1$-based algorithms such as the Basis Pursuit, the Dantzig selector, and the LASSO estimator. Compared with performance analysis involving the Restricted Isometry Constant, the arguments in this paper are much less complicated and provide more intuition on the stability of sparse signal recovery. We show also that, with high probability, the subgaussian ensemble generates measurement matrices with $\ell_1$-CMSVs bounded away from zero, as long as the number of measurements is relatively large. To compute the $\ell_1$-CMSV and its lower bound, we design two algorithms based on the interior point algorithm and the semi-definite relaxation.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.