Papers
Topics
Authors
Recent
2000 character limit reached

The Dichotomy of List Homomorphisms for Digraphs (1004.2908v2)

Published 16 Apr 2010 in cs.CC and math.CO

Abstract: The Dichotomy Conjecture for constraint satisfaction problems has been verified for conservative problems (or, equivalently, for list homomorphism problems) by Andrei Bulatov. An earlier case of this dichotomy, for list homomorphisms to undirected graphs, came with an elegant structural distinction between the tractable and intractable cases. Such structural characterization is absent in Bulatov's classification, and Bulatov asked whether one can be found. We provide an answer in the case of digraphs; the technique will apply in a broader context. The key concept we introduce is that of a digraph asteroidal triple (DAT). The dichotomy then takes the following form. If a digraph H has a DAT, then the list homomorphism problem for H is NP-complete; and a DAT-free digraph H has a polynomial time solvable list homomorphism problem. DAT-free graphs can be recognized in polynomial time.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.