Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Error Rates of Capacity-Achieving Codes Are Convex (1004.2683v1)

Published 15 Apr 2010 in cs.IT and math.IT

Abstract: Motivated by a wide-spread use of convex optimization techniques, convexity properties of bit error rate of the maximum likelihood detector operating in the AWGN channel are studied for arbitrary constellations and bit mappings, which also includes coding under maximum-likelihood decoding. Under this generic setting, the pairwise probability of error and bit error rate are shown to be convex functions of the SNR and noise power in the high SNR/low noise regime with explicitly-determined boundary. Any code, including capacity-achieving ones, whose decision regions include the hardened noise spheres (from the noise sphere hardening argument in the channel coding theorem) satisfies this high SNR requirement and thus has convex error rates in both SNR and noise power. We conjecture that all capacity-achieving codes have convex error rates.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.