Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

All Ternary Permutation Constraint Satisfaction Problems Parameterized Above Average Have Kernels with Quadratic Numbers of Variables (1004.1956v3)

Published 12 Apr 2010 in cs.DS and cs.DM

Abstract: A ternary Permutation-CSP is specified by a subset $\Pi$ of the symmetric group $\mathcal S_3$. An instance of such a problem consists of a set of variables $V$ and a multiset of constraints, which are ordered triples of distinct variables of $V.$ The objective is to find a linear ordering $\alpha$ of $V$ that maximizes the number of triples whose ordering (under $\alpha$) follows a permutation in $\Pi$. We prove that all ternary Permutation-CSPs parameterized above average have kernels with quadratic numbers of variables.

Citations (62)

Summary

We haven't generated a summary for this paper yet.