Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Phase Transitions for Greedy Sparse Approximation Algorithms (1004.1821v1)

Published 11 Apr 2010 in cs.IT and math.IT

Abstract: A major enterprise in compressed sensing and sparse approximation is the design and analysis of computationally tractable algorithms for recovering sparse, exact or approximate, solutions of underdetermined linear systems of equations. Many such algorithms have now been proven to have optimal-order uniform recovery guarantees using the ubiquitous Restricted Isometry Property (RIP). However, it is unclear when the RIP-based sufficient conditions on the algorithm are satisfied. We present a framework in which this task can be achieved; translating these conditions for Gaussian measurement matrices into requirements on the signal's sparsity level, length, and number of measurements. We illustrate this approach on three of the state-of-the-art greedy algorithms: CoSaMP, Subspace Pursuit (SP), and Iterative Hard Thresholding (IHT). Designed to allow a direct comparison of existing theory, our framework implies that, according to the best known bounds, IHT requires the fewest number of compressed sensing measurements and has the lowest per iteration computational cost of the three algorithms compared here.

Citations (63)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.