Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Belief Propagation for Min-cost Network Flow: Convergence and Correctness (1004.1586v4)

Published 9 Apr 2010 in cs.DM and cs.AI

Abstract: Message passing type algorithms such as the so-called Belief Propagation algorithm have recently gained a lot of attention in the statistics, signal processing and machine learning communities as attractive algorithms for solving a variety of optimization and inference problems. As a decentralized, easy to implement and empirically successful algorithm, BP deserves attention from the theoretical standpoint, and here not much is known at the present stage. In order to fill this gap we consider the performance of the BP algorithm in the context of the capacitated minimum-cost network flow problem - the classical problem in the operations research field. We prove that BP converges to the optimal solution in the pseudo-polynomial time, provided that the optimal solution of the underlying problem is unique and the problem input is integral. Moreover, we present a simple modification of the BP algorithm which gives a fully polynomial-time randomized approximation scheme (FPRAS) for the same problem, which no longer requires the uniqueness of the optimal solution. This is the first instance where BP is proved to have fully-polynomial running time. Our results thus provide a theoretical justification for the viability of BP as an attractive method to solve an important class of optimization problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. David Gamarnik (70 papers)
  2. Devavrat Shah (105 papers)
  3. Yehua Wei (5 papers)
Citations (62)

Summary

We haven't generated a summary for this paper yet.