Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Superior Exploration-Exploitation Balance with Quantum-Inspired Hadamard Walks (1004.0514v1)

Published 4 Apr 2010 in cs.NE

Abstract: This paper extends the analogies employed in the development of quantum-inspired evolutionary algorithms by proposing quantum-inspired Hadamard walks, called QHW. A novel quantum-inspired evolutionary algorithm, called HQEA, for solving combinatorial optimization problems, is also proposed. The novelty of HQEA lies in it's incorporation of QHW Remote Search and QHW Local Search - the quantum equivalents of classical mutation and local search, that this paper defines. The intuitive reasoning behind this approach, and the exploration-exploitation balance thus occurring is explained. From the results of the experiments carried out on the 0,1-knapsack problem, HQEA performs significantly better than a conventional genetic algorithm, CGA, and two quantum-inspired evolutionary algorithms - QEA and NQEA, in terms of convergence speed and accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.