Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scalable Large-Margin Mahalanobis Distance Metric Learning (1003.0487v1)

Published 2 Mar 2010 in cs.CV

Abstract: For many machine learning algorithms such as $k$-Nearest Neighbor ($k$-NN) classifiers and $ k $-means clustering, often their success heavily depends on the metric used to calculate distances between different data points. An effective solution for defining such a metric is to learn it from a set of labeled training samples. In this work, we propose a fast and scalable algorithm to learn a Mahalanobis distance metric. By employing the principle of margin maximization to achieve better generalization performances, this algorithm formulates the metric learning as a convex optimization problem and a positive semidefinite (psd) matrix is the unknown variable. a specialized gradient descent method is proposed. our algorithm is much more efficient and has a better performance in scalability compared with existing methods. Experiments on benchmark data sets suggest that, compared with state-of-the-art metric learning algorithms, our algorithm can achieve a comparable classification accuracy with reduced computational complexity.

Citations (71)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube