Approximate Sparsity Pattern Recovery: Information-Theoretic Lower Bounds (1002.4458v4)
Abstract: Recovery of the sparsity pattern (or support) of an unknown sparse vector from a small number of noisy linear measurements is an important problem in compressed sensing. In this paper, the high-dimensional setting is considered. It is shown that if the measurement rate and per-sample signal-to-noise ratio (SNR) are finite constants independent of the length of the vector, then the optimal sparsity pattern estimate will have a constant fraction of errors. Lower bounds on the measurement rate needed to attain a desired fraction of errors are given in terms of the SNR and various key parameters of the unknown vector. The tightness of the bounds in a scaling sense, as a function of the SNR and the fraction of errors, is established by comparison with existing achievable bounds. Near optimality is shown for a wide variety of practically motivated signal models.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.