Emergent Mind

Contextual Bandit Algorithms with Supervised Learning Guarantees

(1002.4058)
Published Feb 22, 2010 in cs.LG

Abstract

We address the problem of learning in an online, bandit setting where the learner must repeatedly select among $K$ actions, but only receives partial feedback based on its choices. We establish two new facts: First, using a new algorithm called Exp4.P, we show that it is possible to compete with the best in a set of $N$ experts with probability $1-\delta$ while incurring regret at most $O(\sqrt{KT\ln(N/\delta)})$ over $T$ time steps. The new algorithm is tested empirically in a large-scale, real-world dataset. Second, we give a new algorithm called VE that competes with a possibly infinite set of policies of VC-dimension $d$ while incurring regret at most $O(\sqrt{T(d\ln(T) + \ln (1/\delta))})$ with probability $1-\delta$. These guarantees improve on those of all previous algorithms, whether in a stochastic or adversarial environment, and bring us closer to providing supervised learning type guarantees for the contextual bandit setting.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.