Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Improving Term Extraction Using Particle Swarm Optimization Techniques (1002.4041v1)

Published 22 Feb 2010 in cs.IR

Abstract: Term extraction is one of the layers in the ontology development process which has the task to extract all the terms contained in the input document automatically. The purpose of this process is to generate list of terms that are relevant to the domain of the input document. In the literature there are many approaches, techniques and algorithms used for term extraction. In this paper we propose a new approach using particle swarm optimization techniques in order to improve the accuracy of term extraction results. We choose five features to represent the term score. The approach has been applied to the domain of religious document. We compare our term extraction method precision with TFIDF, Weirdness, GlossaryExtraction and TermExtractor. The experimental results show that our propose approach achieve better precision than those four algorithm.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.