Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multiuser Scheduling in a Markov-modeled Downlink using Randomly Delayed ARQ Feedback (1002.3312v2)

Published 17 Feb 2010 in cs.IT, cs.SY, math.IT, and math.OC

Abstract: We focus on the downlink of a cellular system, which corresponds to the bulk of the data transfer in such wireless systems. We address the problem of opportunistic multiuser scheduling under imperfect channel state information, by exploiting the memory inherent in the channel. In our setting, the channel between the base station and each user is modeled by a two-state Markov chain and the scheduled user sends back an ARQ feedback signal that arrives at the scheduler with a random delay that is i.i.d across users and time. The scheduler indirectly estimates the channel via accumulated delayed-ARQ feedback and uses this information to make scheduling decisions. We formulate a throughput maximization problem as a partially observable Markov decision process (POMDP). For the case of two users in the system, we show that a greedy policy is sum throughput optimal for any distribution on the ARQ feedback delay. For the case of more than two users, we prove that the greedy policy is suboptimal and demonstrate, via numerical studies, that it has near optimal performance. We show that the greedy policy can be implemented by a simple algorithm that does not require the statistics of the underlying Markov channel or the ARQ feedback delay, thus making it robust against errors in system parameter estimation. Establishing an equivalence between the two-user system and a genie-aided system, we obtain a simple closed form expression for the sum capacity of the Markov-modeled downlink. We further derive inner and outer bounds on the capacity region of the Markov-modeled downlink and tighten these bounds for special cases of the system parameters.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube