Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improved Constructions for Non-adaptive Threshold Group Testing (1002.2244v3)

Published 10 Feb 2010 in cs.DM, cs.IT, and math.IT

Abstract: The basic goal in combinatorial group testing is to identify a set of up to $d$ defective items within a large population of size $n \gg d$ using a pooling strategy. Namely, the items can be grouped together in pools, and a single measurement would reveal whether there are one or more defectives in the pool. The threshold model is a generalization of this idea where a measurement returns positive if the number of defectives in the pool reaches a fixed threshold $u > 0$, negative if this number is no more than a fixed lower threshold $\ell < u$, and may behave arbitrarily otherwise. We study non-adaptive threshold group testing (in a possibly noisy setting) and show that, for this problem, $O(d{g+2} (\log d) \log(n/d))$ measurements (where $g := u-\ell-1$ and $u$ is any fixed constant) suffice to identify the defectives, and also present almost matching lower bounds. This significantly improves the previously known (non-constructive) upper bound $O(d{u+1} \log(n/d))$. Moreover, we obtain a framework for explicit construction of measurement schemes using lossless condensers. The number of measurements resulting from this scheme is ideally bounded by $O(d{g+3} (\log d) \log n)$. Using state-of-the-art constructions of lossless condensers, however, we obtain explicit testing schemes with $O(d{g+3} (\log d) qpoly(\log n))$ and $O(d{g+3+\beta} poly(\log n))$ measurements, for arbitrary constant $\beta > 0$.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)