Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Constructions for Non-adaptive Threshold Group Testing (1002.2244v3)

Published 10 Feb 2010 in cs.DM, cs.IT, and math.IT

Abstract: The basic goal in combinatorial group testing is to identify a set of up to $d$ defective items within a large population of size $n \gg d$ using a pooling strategy. Namely, the items can be grouped together in pools, and a single measurement would reveal whether there are one or more defectives in the pool. The threshold model is a generalization of this idea where a measurement returns positive if the number of defectives in the pool reaches a fixed threshold $u > 0$, negative if this number is no more than a fixed lower threshold $\ell < u$, and may behave arbitrarily otherwise. We study non-adaptive threshold group testing (in a possibly noisy setting) and show that, for this problem, $O(d{g+2} (\log d) \log(n/d))$ measurements (where $g := u-\ell-1$ and $u$ is any fixed constant) suffice to identify the defectives, and also present almost matching lower bounds. This significantly improves the previously known (non-constructive) upper bound $O(d{u+1} \log(n/d))$. Moreover, we obtain a framework for explicit construction of measurement schemes using lossless condensers. The number of measurements resulting from this scheme is ideally bounded by $O(d{g+3} (\log d) \log n)$. Using state-of-the-art constructions of lossless condensers, however, we obtain explicit testing schemes with $O(d{g+3} (\log d) qpoly(\log n))$ and $O(d{g+3+\beta} poly(\log n))$ measurements, for arbitrary constant $\beta > 0$.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube