Papers
Topics
Authors
Recent
2000 character limit reached

The Highest Expected Reward Decoding for HMMs with Application to Recombination Detection

Published 25 Jan 2010 in cs.DS and q-bio.GN | (1001.4499v1)

Abstract: Hidden Markov models are traditionally decoded by the Viterbi algorithm which finds the highest probability state path in the model. In recent years, several limitations of the Viterbi decoding have been demonstrated, and new algorithms have been developed to address them \citep{Kall2005,Brejova2007,Gross2007,Brown2010}. In this paper, we propose a new efficient highest expected reward decoding algorithm (HERD) that allows for uncertainty in boundaries of individual sequence features. We demonstrate usefulness of our approach on jumping HMMs for recombination detection in viral genomes.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.