Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

The Complexity of Flood Filling Games (1001.4420v3)

Published 25 Jan 2010 in cs.DS

Abstract: We study the complexity of the popular one player combinatorial game known as Flood-It. In this game the player is given an n by n board of tiles where each tile is allocated one of c colours. The goal is to make the colours of all tiles equal via the shortest possible sequence of flooding operations. In the standard version, a flooding operation consists of the player choosing a colour k, which then changes the colour of all the tiles in the monochromatic region connected to the top left tile to k. After this operation has been performed, neighbouring regions which are already of the chosen colour k will then also become connected, thereby extending the monochromatic region of the board. We show that finding the minimum number of flooding operations is NP-hard for c>=3 and that this even holds when the player can perform flooding operations from any position on the board. However, we show that this "free" variant is in P for c=2. We also prove that for an unbounded number of colours, Flood-It remains NP-hard for boards of height at least 3, but is in P for boards of height 2. Next we show how a c-1 approximation and a randomised 2c/3 approximation algorithm can be derived, and that no polynomial time constant factor, independent of c, approximation algorithm exists unless P=NP. We then investigate how many moves are required for the "most demanding" n by n boards (those requiring the most moves) and show that the number grows as fast as Theta(n*c0.5). Finally, we consider boards where the colours of the tiles are chosen at random and show that for c>=2, the number of moves required to flood the whole board is Omega(n) with high probability.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.