On Exponential Sums, Nowton identities and Dickson Polynomials over Finite Fields (1001.4305v1)
Abstract: Let $\mathbb{F}{q}$ be a finite field, $\mathbb{F}{qs}$ be an extension of $\mathbb{F}q$, let $f(x)\in \mathbb{F}_q[x]$ be a polynomial of degree $n$ with $\gcd(n,q)=1$. We present a recursive formula for evaluating the exponential sum $\sum{c\in \mathbb{F}{qs}}\chi{(s)}(f(x))$. Let $a$ and $b$ be two elements in $\mathbb{F}_q$ with $a\neq 0$, $u$ be a positive integer. We obtain an estimate for the exponential sum $\sum{c\in \mathbb{F}*_{qs}}\chi{(s)}(acu+bc{-1})$, where $\chi{(s)}$ is the lifting of an additive character $\chi$ of $\mathbb{F}_q$. Some properties of the sequences constructed from these exponential sums are provided also.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.