Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Exponential Sums, Nowton identities and Dickson Polynomials over Finite Fields (1001.4305v1)

Published 25 Jan 2010 in cs.IT and math.IT

Abstract: Let $\mathbb{F}{q}$ be a finite field, $\mathbb{F}{qs}$ be an extension of $\mathbb{F}q$, let $f(x)\in \mathbb{F}_q[x]$ be a polynomial of degree $n$ with $\gcd(n,q)=1$. We present a recursive formula for evaluating the exponential sum $\sum{c\in \mathbb{F}{qs}}\chi{(s)}(f(x))$. Let $a$ and $b$ be two elements in $\mathbb{F}_q$ with $a\neq 0$, $u$ be a positive integer. We obtain an estimate for the exponential sum $\sum{c\in \mathbb{F}*_{qs}}\chi{(s)}(acu+bc{-1})$, where $\chi{(s)}$ is the lifting of an additive character $\chi$ of $\mathbb{F}_q$. Some properties of the sequences constructed from these exponential sums are provided also.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.