Emergent Mind

Abstract

In the Densest k-Subgraph problem, given a graph G and a parameter k, one needs to find a subgraph of G induced on k vertices that contains the largest number of edges. There is a significant gap between the best known upper and lower bounds for this problem. It is NP-hard, and does not have a PTAS unless NP has subexponential time algorithms. On the other hand, the current best known algorithm of Feige, Kortsarz and Peleg, gives an approximation ratio of n1/3-epsilon for some specific epsilon > 0 (estimated at around 1/60). We present an algorithm that for every epsilon > 0 approximates the Densest k-Subgraph problem within a ratio of n1/4+epsilon in time nO(1/epsilon). In particular, our algorithm achieves an approximation ratio of O(n1/4) in time nO(log n). Our algorithm is inspired by studying an average-case version of the problem where the goal is to distinguish random graphs from graphs with planted dense subgraphs. The approximation ratio we achieve for the general case matches the distinguishing ratio we obtain for this planted problem. At a high level, our algorithms involve cleverly counting appropriately defined trees of constant size in G, and using these counts to identify the vertices of the dense subgraph. Our algorithm is based on the following principle. We say that a graph G(V,E) has log-density alpha if its average degree is Theta(|V|alpha). The algorithmic core of our result is a family of algorithms that output k-subgraphs of nontrivial density whenever the log-density of the densest k-subgraph is larger than the log-density of the host graph.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.