Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detecting High Log-Densities -- an O(n^1/4) Approximation for Densest k-Subgraph (1001.2891v1)

Published 17 Jan 2010 in cs.DS

Abstract: In the Densest k-Subgraph problem, given a graph G and a parameter k, one needs to find a subgraph of G induced on k vertices that contains the largest number of edges. There is a significant gap between the best known upper and lower bounds for this problem. It is NP-hard, and does not have a PTAS unless NP has subexponential time algorithms. On the other hand, the current best known algorithm of Feige, Kortsarz and Peleg, gives an approximation ratio of n1/3-epsilon for some specific epsilon > 0 (estimated at around 1/60). We present an algorithm that for every epsilon > 0 approximates the Densest k-Subgraph problem within a ratio of n1/4+epsilon in time nO(1/epsilon). In particular, our algorithm achieves an approximation ratio of O(n1/4) in time nO(log n). Our algorithm is inspired by studying an average-case version of the problem where the goal is to distinguish random graphs from graphs with planted dense subgraphs. The approximation ratio we achieve for the general case matches the distinguishing ratio we obtain for this planted problem. At a high level, our algorithms involve cleverly counting appropriately defined trees of constant size in G, and using these counts to identify the vertices of the dense subgraph. Our algorithm is based on the following principle. We say that a graph G(V,E) has log-density alpha if its average degree is Theta(|V|alpha). The algorithmic core of our result is a family of algorithms that output k-subgraphs of nontrivial density whenever the log-density of the densest k-subgraph is larger than the log-density of the host graph.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.