Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Restricted Eigenvalue Conditions on Subgaussian Random Matrices (0912.4045v2)

Published 21 Dec 2009 in math.ST, math.FA, stat.ML, and stat.TH

Abstract: It is natural to ask: what kinds of matrices satisfy the Restricted Eigenvalue (RE) condition? In this paper, we associate the RE condition (Bickel-Ritov-Tsybakov 09) with the complexity of a subset of the sphere in $\Rp$, where $p$ is the dimensionality of the data, and show that a class of random matrices with independent rows, but not necessarily independent columns, satisfy the RE condition, when the sample size is above a certain lower bound. Here we explicitly introduce an additional covariance structure to the class of random matrices that we have known by now that satisfy the Restricted Isometry Property as defined in Candes and Tao 05 (and hence the RE condition), in order to compose a broader class of random matrices for which the RE condition holds. In this case, tools from geometric functional analysis in characterizing the intrinsic low-dimensional structures associated with the RE condition has been crucial in analyzing the sample complexity and understanding its statistical implications for high dimensional data.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.