Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Estimation Theoretic Approach for Sparsity Pattern Recovery in the Noisy Setting (0911.4880v1)

Published 25 Nov 2009 in cs.IT and math.IT

Abstract: Compressed sensing deals with the reconstruction of sparse signals using a small number of linear measurements. One of the main challenges in compressed sensing is to find the support of a sparse signal. In the literature, several bounds on the scaling law of the number of measurements for successful support recovery have been derived where the main focus is on random Gaussian measurement matrices. In this paper, we investigate the noisy support recovery problem from an estimation theoretic point of view, where no specific assumption is made on the underlying measurement matrix. The linear measurements are perturbed by additive white Gaussian noise. We define the output of a support estimator to be a set of position values in increasing order. We set the error between the true and estimated supports as the $\ell_2$-norm of their difference. On the one hand, this choice allows us to use the machinery behind the $\ell_2$-norm error metric and on the other hand, converts the support recovery into a more intuitive and geometrical problem. First, by using the Hammersley-Chapman-Robbins (HCR) bound, we derive a fundamental lower bound on the performance of any \emph{unbiased} estimator of the support set. This lower bound provides us with necessary conditions on the number of measurements for reliable $\ell_2$-norm support recovery, which we specifically evaluate for uniform Gaussian measurement matrices. Then, we analyze the maximum likelihood estimator and derive conditions under which the HCR bound is achievable. This leads us to the number of measurements for the optimum decoder which is sufficient for reliable $\ell_2$-norm support recovery. Using this framework, we specifically evaluate sufficient conditions for uniform Gaussian measurement matrices.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube