Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sharp Load Thresholds for Cuckoo Hashing (0910.5147v1)

Published 27 Oct 2009 in cs.DS, cs.DM, math.CO, and math.PR

Abstract: The paradigm of many choices has influenced significantly the design of efficient data structures and, most notably, hash tables. Cuckoo hashing is a technique that extends this concept. There,we are given a table with $n$ locations, and we assume that each location can hold one item. Each item to be inserted chooses randomly k>1 locations and has to be placed in any one of them. How much load can cuckoo hashing handle before collisions prevent the successful assignment of the available items to the chosen locations? Practical evaluations of this method have shown that one can allocate a number of elements that is a large proportion of the size of the table, being very close to 1 even for small values of k such as 4 or 5. In this paper we show that there is a critical value for this proportion: with high probability, when the amount of available items is below this value, then these can be allocated successfully, but when it exceeds this value, the allocation becomes impossible. We give explicitly for each k>1 this critical value. This answers an open question posed by Mitzenmacher (ESA '09) and underpins theoretically the experimental results. Our proofs are based on the translation of the question into a hypergraph setting, and the study of the related typical properties of random k-uniform hypergraphs.

Citations (50)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.