Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal bounds for sign-representing the intersection of two halfspaces by polynomials (0910.4224v2)

Published 22 Oct 2009 in cs.CC

Abstract: The threshold degree of a function f:{0,1}n->{-1,+1} is the least degree of a real polynomial p with f(x)=sgn p(x). We prove that the intersection of two halfspaces on {0,1}n has threshold degree Omega(n), which matches the trivial upper bound and completely answers a question due to Klivans (2002). The best previous lower bound was Omega(sqrt n). Our result shows that the intersection of two halfspaces on {0,1}n only admits a trivial 2{Theta(n)}-time learning algorithm based on sign-representation by polynomials, unlike the advances achieved in PAC learning DNF formulas and read-once Boolean formulas. The proof introduces a new technique of independent interest, based on Fourier analysis and matrix theory.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.