Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved Approximation of Linear Threshold Functions (0910.3719v1)

Published 19 Oct 2009 in cs.CC

Abstract: We prove two main results on how arbitrary linear threshold functions $f(x) = \sign(w\cdot x - \theta)$ over the $n$-dimensional Boolean hypercube can be approximated by simple threshold functions. Our first result shows that every $n$-variable threshold function $f$ is $\eps$-close to a threshold function depending only on $\Inf(f)2 \cdot \poly(1/\eps)$ many variables, where $\Inf(f)$ denotes the total influence or average sensitivity of $f.$ This is an exponential sharpening of Friedgut's well-known theorem \cite{Friedgut:98}, which states that every Boolean function $f$ is $\eps$-close to a function depending only on $2{O(\Inf(f)/\eps)}$ many variables, for the case of threshold functions. We complement this upper bound by showing that $\Omega(\Inf(f)2 + 1/\epsilon2)$ many variables are required for $\epsilon$-approximating threshold functions. Our second result is a proof that every $n$-variable threshold function is $\eps$-close to a threshold function with integer weights at most $\poly(n) \cdot 2{\tilde{O}(1/\eps{2/3})}.$ This is a significant improvement, in the dependence on the error parameter $\eps$, on an earlier result of \cite{Servedio:07cc} which gave a $\poly(n) \cdot 2{\tilde{O}(1/\eps{2})}$ bound. Our improvement is obtained via a new proof technique that uses strong anti-concentration bounds from probability theory. The new technique also gives a simple and modular proof of the original \cite{Servedio:07cc} result, and extends to give low-weight approximators for threshold functions under a range of probability distributions beyond just the uniform distribution.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.