Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Average sensitivity and noise sensitivity of polynomial threshold functions (0909.5011v2)

Published 28 Sep 2009 in cs.CC and cs.DM

Abstract: We give the first non-trivial upper bounds on the average sensitivity and noise sensitivity of degree-$d$ polynomial threshold functions (PTFs). These bounds hold both for PTFs over the Boolean hypercube and for PTFs over $\Rn$ under the standard $n$-dimensional Gaussian distribution. Our bound on the Boolean average sensitivity of PTFs represents progress towards the resolution of a conjecture of Gotsman and Linial \cite{GL:94}, which states that the symmetric function slicing the middle $d$ layers of the Boolean hypercube has the highest average sensitivity of all degree-$d$ PTFs. Via the $L_1$ polynomial regression algorithm of Kalai et al. \cite{KKMS:08}, our bounds on Gaussian and Boolean noise sensitivity yield polynomial-time agnostic learning algorithms for the broad class of constant-degree PTFs under these input distributions. The main ingredients used to obtain our bounds on both average and noise sensitivity of PTFs in the Gaussian setting are tail bounds and anti-concentration bounds on low-degree polynomials in Gaussian random variables \cite{Janson:97,CW:01}. To obtain our bound on the Boolean average sensitivity of PTFs, we generalize the ``critical-index'' machinery of \cite{Servedio:07cc} (which in that work applies to halfspaces, i.e. degree-1 PTFs) to general PTFs. Together with the "invariance principle" of \cite{MOO:05}, this lets us extend our techniques from the Gaussian setting to the Boolean setting. Our bound on Boolean noise sensitivity is achieved via a simple reduction from upper bounds on average sensitivity of Boolean PTFs to corresponding bounds on noise sensitivity.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.