Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Error exponents for Neyman-Pearson detection of a continuous-time Gaussian Markov process from noisy irregular samples (0909.4484v1)

Published 24 Sep 2009 in cs.IT and math.IT

Abstract: This paper addresses the detection of a stochastic process in noise from irregular samples. We consider two hypotheses. The \emph{noise only} hypothesis amounts to model the observations as a sample of a i.i.d. Gaussian random variables (noise only). The \emph{signal plus noise} hypothesis models the observations as the samples of a continuous time stationary Gaussian process (the signal) taken at known but random time-instants corrupted with an additive noise. Two binary tests are considered, depending on which assumptions is retained as the null hypothesis. Assuming that the signal is a linear combination of the solution of a multidimensional stochastic differential equation (SDE), it is shown that the minimum Type II error probability decreases exponentially in the number of samples when the False Alarm probability is fixed. This behavior is described by \emph{error exponents} that are completely characterized. It turns out that they are related with the asymptotic behavior of the Kalman Filter in random stationary environment, which is studied in this paper. Finally, numerical illustrations of our claims are provided in the context of sensor networks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.