A Strong Direct Product Theorem for Disjointness (0908.2940v3)
Abstract: A strong direct product theorem states that if we want to compute $k$ independent instances of a function, using less than $k$ times the resources needed for one instance, then the overall success probability will be exponentially small in $k$. We establish such a theorem for the randomized communication complexity of the Disjointness problem, i.e., with communication $const\cdot kn$ the success probability of solving $k$ instances of size $n$ can only be exponentially small in $k$. We show that this bound even holds for $AM$ communication protocols with limited ambiguity. This also implies a new lower bound for Disjointness in a restricted 3-player NOF protocol, and optimal communication-space tradeoffs for Boolean matrix product. Our main result follows from a solution to the dual of a linear programming problem, whose feasibility comes from a so-called Intersection Sampling Lemma that generalizes a result by Razborov.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.