Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Classification by Set Cover: The Prototype Vector Machine (0908.2284v1)

Published 17 Aug 2009 in stat.ML

Abstract: We introduce a new nearest-prototype classifier, the prototype vector machine (PVM). It arises from a combinatorial optimization problem which we cast as a variant of the set cover problem. We propose two algorithms for approximating its solution. The PVM selects a relatively small number of representative points which can then be used for classification. It contains 1-NN as a special case. The method is compatible with any dissimilarity measure, making it amenable to situations in which the data are not embedded in an underlying feature space or in which using a non-Euclidean metric is desirable. Indeed, we demonstrate on the much studied ZIP code data how the PVM can reap the benefits of a problem-specific metric. In this example, the PVM outperforms the highly successful 1-NN with tangent distance, and does so retaining fewer than half of the data points. This example highlights the strengths of the PVM in yielding a low-error, highly interpretable model. Additionally, we apply the PVM to a protein classification problem in which a kernel-based distance is used.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.