Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Complex networks: A mixture of power-law and Weibull distributions (0908.0588v3)

Published 5 Aug 2009 in cs.NI, cond-mat.stat-mech, and physics.soc-ph

Abstract: Complex networks have recently aroused a lot of interest. However, network edges are considered to be the same in almost all these studies. In this paper, we present a simple classification method, which divides the edges of undirected, unweighted networks into two types: p2c and p2p. The p2c edge represents a hierarchical relationship between two nodes, while the p2p edge represents an equal relationship between two nodes. It is surprising and unexpected that for many real-world networks from a wide variety of domains (including computer science, transportation, biology, engineering and social science etc), the p2c degree distribution follows a power law more strictly than the total degree distribution, while the p2p degree distribution follows the Weibull distribution very well. Thus, the total degree distribution can be seen as a mixture of power-law and Weibull distributions. More surprisingly, it is found that in many cases, the total degree distribution can be better described by the Weibull distribution, rather than a power law as previously suggested. By comparing two topology models, we think that the origin of the Weibull distribution in complex networks might be a mixture of both preferential and random attachments when networks evolve.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube