Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Effect of user tastes on personalized recommendation (0907.1224v2)

Published 7 Jul 2009 in physics.data-an, cs.IR, and physics.soc-ph

Abstract: In this paper, based on a weighted projection of the user-object bipartite network, we study the effects of user tastes on the mass-diffusion-based personalized recommendation algorithm, where a user's tastes or interests are defined by the average degree of the objects he has collected. We argue that the initial recommendation power located on the objects should be determined by both of their degree and the users' tastes. By introducing a tunable parameter, the user taste effects on the configuration of initial recommendation power distribution are investigated. The numerical results indicate that the presented algorithm could improve the accuracy, measured by the average ranking score, more importantly, we find that when the data is sparse, the algorithm should give more recommendation power to the objects whose degrees are close to the users' tastes, while when the data becomes dense, it should assign more power on the objects whose degrees are significantly different from user's tastes.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.