Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

AFPTAS results for common variants of bin packing: A new method to handle the small items (0906.5050v1)

Published 27 Jun 2009 in cs.DS

Abstract: We consider two well-known natural variants of bin packing, and show that these packing problems admit asymptotic fully polynomial time approximation schemes (AFPTAS). In bin packing problems, a set of one-dimensional items of size at most 1 is to be assigned (packed) to subsets of sum at most 1 (bins). It has been known for a while that the most basic problem admits an AFPTAS. In this paper, we develop methods that allow to extend this result to other variants of bin packing. Specifically, the problems which we study in this paper, for which we design asymptotic fully polynomial time approximation schemes, are the following. The first problem is "Bin packing with cardinality constraints", where a parameter k is given, such that a bin may contain up to k items. The goal is to minimize the number of bins used. The second problem is "Bin packing with rejection", where every item has a rejection penalty associated with it. An item needs to be either packed to a bin or rejected, and the goal is to minimize the number of used bins plus the total rejection penalty of unpacked items. This resolves the complexity of two important variants of the bin packing problem. Our approximation schemes use a novel method for packing the small items. This new method is the core of the improved running times of our schemes over the running times of the previous results, which are only asymptotic polynomial time approximation schemes (APTAS).

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube