Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Monte-Carlo Implementation of the SAGE Algorithm for Joint Soft Multiuser and Channel Parameter Estimation (0906.3816v1)

Published 20 Jun 2009 in cs.IT and math.IT

Abstract: An efficient, joint transmission delay and channel parameter estimation algorithm is proposed for uplink asynchronous direct-sequence code-division multiple access (DS-CDMA) systems based on the space-alternating generalized expectation maximization (SAGE) framework. The marginal likelihood of the unknown parameters, averaged over the data sequence, as well as the expectation and maximization steps of the SAGE algorithm are derived analytically. To implement the proposed algorithm, a Markov Chain Monte Carlo (MCMC) technique, called Gibbs sampling, is employed to compute the {\em a posteriori} probabilities of data symbols in a computationally efficient way. Computer simulations show that the proposed algorithm has excellent estimation performance. This so-called MCMC-SAGE receiver is guaranteed to converge in likelihood.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.