Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spanning connectivity games (0906.3643v1)

Published 19 Jun 2009 in cs.GT and cs.CC

Abstract: The Banzhaf index, Shapley-Shubik index and other voting power indices measure the importance of a player in a coalitional game. We consider a simple coalitional game called the spanning connectivity game (SCG) based on an undirected, unweighted multigraph, where edges are players. We examine the computational complexity of computing the voting power indices of edges in the SCG. It is shown that computing Banzhaf values and Shapley-Shubik indices is #P-complete for SCGs. Interestingly, Holler indices and Deegan-Packel indices can be computed in polynomial time. Among other results, it is proved that Banzhaf indices can be computed in polynomial time for graphs with bounded treewidth. It is also shown that for any reasonable representation of a simple game, a polynomial time algorithm to compute the Shapley-Shubik indices implies a polynomial time algorithm to compute the Banzhaf indices. As a corollary, computing the Shapley value is #P-complete for simple games represented by the set of minimal winning coalitions, Threshold Network Flow Games, Vertex Connectivity Games and Coalitional Skill Games.

Citations (3)

Summary

We haven't generated a summary for this paper yet.