Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Large-Margin kNN Classification Using a Deep Encoder Network (0906.1814v1)

Published 9 Jun 2009 in cs.LG and cs.AI

Abstract: KNN is one of the most popular classification methods, but it often fails to work well with inappropriate choice of distance metric or due to the presence of numerous class-irrelevant features. Linear feature transformation methods have been widely applied to extract class-relevant information to improve kNN classification, which is very limited in many applications. Kernels have been used to learn powerful non-linear feature transformations, but these methods fail to scale to large datasets. In this paper, we present a scalable non-linear feature mapping method based on a deep neural network pretrained with restricted boltzmann machines for improving kNN classification in a large-margin framework, which we call DNet-kNN. DNet-kNN can be used for both classification and for supervised dimensionality reduction. The experimental results on two benchmark handwritten digit datasets show that DNet-kNN has much better performance than large-margin kNN using a linear mapping and kNN based on a deep autoencoder pretrained with retricted boltzmann machines.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.