Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Efficiency of (Revenue-)Optimal Mechanisms (0906.1019v1)

Published 4 Jun 2009 in cs.GT

Abstract: We compare the expected efficiency of revenue maximizing (or {\em optimal}) mechanisms with that of efficiency maximizing ones. We show that the efficiency of the revenue maximizing mechanism for selling a single item with k + log_{e/(e-1)} k + 1 bidders is at least as much as the efficiency of the efficiency maximizing mechanism with k bidders, when bidder valuations are drawn i.i.d. from a Monotone Hazard Rate distribution. Surprisingly, we also show that this bound is tight within a small additive constant of 5.7. In other words, Theta(log k) extra bidders suffice for the revenue maximizing mechanism to match the efficiency of the efficiency maximizing mechanism, while o(log k) do not. This is in contrast to the result of Bulow and Klemperer comparing the revenue of the two mechanisms, where only one extra bidder suffices. More precisely, they show that the revenue of the efficiency maximizing mechanism with k+1 bidders is no less than the revenue of the revenue maximizing mechanism with k bidders. We extend our result for the case of selling t identical items and show that 2.2 log k + t Theta(log log k) extra bidders suffice for the revenue maximizing mechanism to match the efficiency of the efficiency maximizing mechanism. In order to prove our results, we do a classification of Monotone Hazard Rate (MHR) distributions and identify a family of MHR distributions, such that for each class in our classification, there is a member of this family that is pointwise lower than every distribution in that class. This lets us prove interesting structural theorems about distributions with Monotone Hazard Rate.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.