Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Lines, Joints, and Incidences in Three Dimensions (0905.1583v1)

Published 11 May 2009 in cs.CG

Abstract: We extend (and somewhat simplify) the algebraic proof technique of Guth and Katz \cite{GK}, to obtain several sharp bounds on the number of incidences between lines and points in three dimensions. Specifically, we show: (i) The maximum possible number of incidences between $n$ lines in $\reals3$ and $m$ of their joints (points incident to at least three non-coplanar lines) is $\Theta(m{1/3}n)$ for $m\ge n$, and $\Theta(m{2/3}n{2/3}+m+n)$ for $m\le n$. (ii) In particular, the number of such incidences cannot exceed $O(n{3/2})$. (iii) The bound in (i) also holds for incidences between $n$ lines and $m$ arbitrary points (not necessarily joints), provided that no plane contains more than O(n) points and each point is incident to at least three lines. As a preliminary step, we give a simpler proof of (an extension of) the bound $O(n{3/2})$, established by Guth and Katz, on the number of joints in a set of $n$ lines in $\reals3$. We also present some further extensions of these bounds, and give a proof of Bourgain's conjecture on incidences between points and lines in 3-space, which constitutes a simpler alternative to the proof of \cite{GK}.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.