Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PTAS for k-tour cover problem on the plane for moderately large values of k (0904.2576v1)

Published 16 Apr 2009 in cs.DS

Abstract: Let P be a set of n points in the Euclidean plane and let O be the origin point in the plane. In the k-tour cover problem (called frequently the capacitated vehicle routing problem), the goal is to minimize the total length of tours that cover all points in P, such that each tour starts and ends in O and covers at most k points from P. The k-tour cover problem is known to be NP-hard. It is also known to admit constant factor approximation algorithms for all values of k and even a polynomial-time approximation scheme (PTAS) for small values of k, i.e., k=O(log n / log log n). We significantly enlarge the set of values of k for which a PTAS is provable. We present a new PTAS for all values of k <= 2{log{\delta}n}, where \delta = \delta(\epsilon). The main technical result proved in the paper is a novel reduction of the k-tour cover problem with a set of n points to a small set of instances of the problem, each with O((k/\epsilon)O(1)) points.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.