Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

One-Counter Markov Decision Processes (0904.2511v4)

Published 16 Apr 2009 in cs.GT and cs.FL

Abstract: We study the computational complexity of central analysis problems for One-Counter Markov Decision Processes (OC-MDPs), a class of finitely-presented, countable-state MDPs. OC-MDPs are equivalent to a controlled extension of (discrete-time) Quasi-Birth-Death processes (QBDs), a stochastic model studied heavily in queueing theory and applied probability. They can thus be viewed as a natural adversarial'' version of a classic stochastic model. Alternatively, they can also be viewed as a natural probabilistic/controlled extension of classic one-counter automata. OC-MDPs also subsume (as a very restricted special case) a recently studied MDP model calledsolvency games'' that model a risk-averse gambling scenario. Basic computational questions about these models include termination'' questions andlimit'' questions, such as the following: does the controller have a strategy'' (orpolicy'') to ensure that the counter (which may for example count the number of jobs in the queue) will hit value 0 (the empty queue) almost surely (a.s.)? Or that it will have infinite limsup value, a.s.? Or, that it will hit value 0 in selected terminal states, a.s.? Or, in case these are not satisfied a.s., compute the maximum (supremum) such probability over all strategies. We provide new upper and lower bounds on the complexity of such problems. For some of them we present a polynomial-time algorithm, whereas for others we show PSPACE- or BH-hardness and give an EXPTIME upper bound. Our upper bounds combine techniques from the theory of MDP reward models, the theory of random walks, and a variety of automata-theoretic methods.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.