Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

About the impossibility to prove P=NP and the pseudo-randomness in NP (0904.0698v3)

Published 4 Apr 2009 in cs.CC

Abstract: The relationship between the complexity classes P and NP is an unsolved question in the field of theoretical computer science. In this paper, we look at the link between the P - NP question and the "Deterministic" versus "Non Deterministic" nature of a problem, and more specifically at the temporal nature of the complexity within the NP class of problems. Let us remind that the NP class is called the class of "Non Deterministic Polynomial" languages. Using the meta argument that results in Mathematics should be "time independent" as they are reproducible, the paper shows that the P!=NP assertion is impossible to prove in the a-temporal framework of Mathematics. In a previous version of the report, we use a similar argument based on randomness to show that the P = NP assertion was also impossible to prove, but this part of the paper was shown to be incorrect. So, this version deletes it. In fact, this paper highlights the time dependence of the complexity for any NP problem, linked to some pseudo-randomness in its heart.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.