Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Guaranteed Minimum Rank Approximation from Linear Observations by Nuclear Norm Minimization with an Ellipsoidal Constraint (0903.4742v1)

Published 27 Mar 2009 in cs.IT and math.IT

Abstract: The rank minimization problem is to find the lowest-rank matrix in a given set. Nuclear norm minimization has been proposed as an convex relaxation of rank minimization. Recht, Fazel, and Parrilo have shown that nuclear norm minimization subject to an affine constraint is equivalent to rank minimization under a certain condition given in terms of the rank-restricted isometry property. However, in the presence of measurement noise, or with only approximately low rank generative model, the appropriate constraint set is an ellipsoid rather than an affine space. There exist polynomial-time algorithms to solve the nuclear norm minimization with an ellipsoidal constraint, but no performance guarantee has been shown for these algorithms. In this paper, we derive such an explicit performance guarantee, bounding the error in the approximate solution provided by nuclear norm minimization with an ellipsoidal constraint.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.