Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Construction and Covering Properties of Constant-Dimension Codes (0903.2675v1)

Published 15 Mar 2009 in cs.IT and math.IT

Abstract: Constant-dimension codes (CDCs) have been investigated for noncoherent error correction in random network coding. The maximum cardinality of CDCs with given minimum distance and how to construct optimal CDCs are both open problems, although CDCs obtained by lifting Gabidulin codes, referred to as KK codes, are nearly optimal. In this paper, we first construct a new class of CDCs based on KK codes, referred to as augmented KK codes, whose cardinalities are greater than previously proposed CDCs. We then propose a low-complexity decoding algorithm for our augmented KK codes using that for KK codes. Our decoding algorithm corrects more errors than a bounded subspace distance decoder by taking advantage of the structure of our augmented KK codes. In the rest of the paper we investigate the covering properties of CDCs. We first derive bounds on the minimum cardinality of a CDC with a given covering radius and then determine the asymptotic behavior of this quantity. Moreover, we show that liftings of rank metric codes have the highest possible covering radius, and hence liftings of rank metric codes are not optimal packing CDCs. Finally, we construct good covering CDCs by permuting liftings of rank metric codes.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.